English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On some free algebras of orthogonal modular forms

MPS-Authors
/persons/resource/persons247588

Wang,  Haowu
Max Planck Institute for Mathematics, Max Planck Society;

External Ressource
Fulltext (public)

arXiv:2003.05374.pdf
(Preprint), 234KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, H., & Williams, B. (2020). On some free algebras of orthogonal modular forms. Advances in Mathematics, 373: 107332. doi:10.1016/j.aim.2020.107332.


Cite as: http://hdl.handle.net/21.11116/0000-0006-E3ED-F
Abstract
For 25 orthogonal groups of signature $(2,n)$ related to the root lattices $A_1$, $2A_1$, $3A_1$, $4A_1$, $A_2$, $A_3$, $A_4$, $A_5$, $A_6$, $A_7$, $D_4$, $D_5$, $D_6$, $D_7$, $D_8$, $E_6$, $E_7$, we prove that the algebras of modular forms on symmetric domains of type IV are freely generated by the additive lifts of some special Jacobi forms. The proof is universal and elementary.