Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Higher topological Hochschild homology of periodic complex K-theory


Stonek,  Bruno
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 830KB

Supplementary Material (public)
There is no public supplementary material available

Stonek, B. (2020). Higher topological Hochschild homology of periodic complex K-theory. Topology and its Applications, 282: 107302. doi:10.1016/j.topol.2020.107302.

Cite as: https://hdl.handle.net/21.11116/0000-0006-E4FA-F
We describe the topological Hochschild homology of the periodic complex
$K$-theory spectrum, $THH(KU)$, as a commutative $KU$-algebra: it is equivalent
to $KU[K(\mathbb{Z},3)]$ and to $F(\Sigma KU_{\mathbb{Q}})$, where $F$ is the
free commutative $KU$-algebra functor on a $KU$-module. Moreover, $F(\Sigma
KU_{\mathbb{Q}})\simeq KU \vee \Sigma KU_{\mathbb{Q}}$, a square-zero
extension. In order to prove these results, we first establish that topological
Hochschild homology commutes, as an algebra, with localization at an element.
Then, we prove that $THH^n(KU)$, the $n$-fold iteration of $THH(KU)$, i.e.
$T^n\otimes KU$, is equivalent to $KU[G]$ where $G$ is a certain product of
integral Eilenberg-Mac Lane spaces, and to a free commutative $KU$-algebra on a
rational $KU$-module. We prove that $S^n \otimes KU$ is equivalent to
$KU[K(\mathbb{Z},n+2)]$ and to $F(\Sigma^n KU_{\mathbb{Q}})$. We describe the
topological Andr\'e-Quillen homology of $KU$.