English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ori, A., Banterle, N., Iskar, M., Andrés-Pons, A., Escher, C., Khanh Bui, H., et al. (2013). Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Molecular Systems Biology, 9: 648. doi:10.1038/msb.2013.4.


Cite as: https://hdl.handle.net/21.11116/0000-0006-EACC-D
Abstract
To understand the structure and function of large molecular machines, accurate knowledge of their stoichiometry is essential. In this study, we developed an integrated targeted proteomics and super-resolution microscopy approach to determine the absolute stoichiometry of the human nuclear pore complex (NPC), possibly the largest eukaryotic protein complex. We show that the human NPC has a previously unanticipated stoichiometry that varies across cancer cell types, tissues and in disease. Using large-scale proteomics, we provide evidence that more than one third of the known, well-defined nuclear protein complexes display a similar cell type-specific variation of their subunit stoichiometry. Our data point to compositional rearrangement as a widespread mechanism for adapting the functions of molecular machines toward cell type-specific constraints and context-dependent needs, and highlight the need of deeper investigation of such structural variants.