User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Hot phase generation by supernovae in ISM simulations: resolution,chemistry, and thermal conduction


Hu,  Chia-Yu
Cosmology, MPI for Astrophysics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Steinwandel, U. P., Moster, B. P., Naab, T., Hu, C.-Y., & Walch, S. (2020). Hot phase generation by supernovae in ISM simulations: resolution,chemistry, and thermal conduction. Monthly Notices of the Royal Astronomical Society, 495(1), 1035-1060. doi:10.1093/mnras/staa821.

Cite as: http://hdl.handle.net/21.11116/0000-0006-ED00-F
Supernovae (SNe) generate hot gas in the interstellar medium (ISM), help setting the ISM structure, and support the driving of outflows. It is important to resolve the hot gas generation for galaxy formation simulations at solar mass and sub-parsec resolution that realize individual SN explosions with ambient densities varying by several orders of magnitude in a realistic multiphase ISM. We test resolution requirements by simulating SN blast waves at three metallicities (Z = 0.01, 0.1, and 1 Z), six densities and their respective equilibrium chemical compositions (n = 0.001–100 cm−3), and four mass resolutions (0.1–100 M), in three dimensions. We include non- equilibrium cooling and chemistry, a homogeneous interstellar radiation field, and shielding with a modern pressure–energy smoothed particle hydrodynamics method including isotropic thermal conduction and a meshless-finite-mass solver. We find stronger resolution requirements for chemistry and hot phase generation than for momentum generation. While at 10 M the radial momenta at the end of the Sedov phase start converging, the hot phase generation and chemistry require higher resolutions to represent the neutral-to-ionized hydrogen fraction at the end of the Sedov phase correctly. Thermal conduction typically reduces the hot phase by 0.2 dex and has little impact on the chemical composition. In general, our 1 and 0.1 M results agree well with previous numerical and analytic estimates. We conclude that for the thermal energy injection SN model presented here resolutions higher than 10 M are required to model the chemistry, momentum, and hot phase generation in the multiphase ISM.