English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Truncated Metallo-Dielectric Omnidirectional Reflector: Collecting Single Photons in the Fundamental Gaussian Mode with 95% Efficiency

MPS-Authors
/persons/resource/persons250377

Morales-Inostroza,  Luis
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201072

Götzinger,  Stephan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

acsphotonics.0c00730.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Li, W., Morales-Inostroza, L., Xu, W., Zhang, P., Götzinger, S., & Chen, X.-W. (2020). Truncated Metallo-Dielectric Omnidirectional Reflector: Collecting Single Photons in the Fundamental Gaussian Mode with 95% Efficiency. ACS Photonics, 7. doi:10.1021/acsphotonics.0c00730.


Cite as: http://hdl.handle.net/21.11116/0000-0006-F07F-D
Abstract
We propose a novel antenna structure that funnelssingle photons from a single emitter with unprecedented efficiencyinto a low-divergence fundamental Gaussian mode. Our devicerelies on the concept of creating an omnidirectional photonicbandgap to inhibit unwanted large-angle emission and to enhancesmall-angle defect-guided-mode emission. The new photoncollection strategy is intuitively illustrated, rigorously verified,and optimized by implementing an efficient, body-of-revolution,finite-difference, time-domain method for in-plane dipole emitters.We investigate a few antenna designs to cover various boundaryconditions posed by fabrication processes or material restrictions and theoretically demonstrate that collection efficiencies into thefundamental Gaussian mode exceeding 95% are achievable. Our antennas are broadband, insensitive to fabrication imperfections andcompatible with a variety of solid-state emitters such as organic molecules, quantum dots, and defect centers in diamond.Unidirectional and low-divergence Gaussian-mode emission from a single emitter may enable the realization of a variety of photonicquantum computer architectures as well as highly efficient light−matter interfaces.