English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantitative susceptibility mapping in β-Amyloid PET-stratified patients with dementia and healthy controls: A hybrid PET/MRI study

MPS-Authors
/persons/resource/persons138163

Rullmann,  Michael
Department of Nuclear Medicine, University of Leipzig, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19981

Schroeter,  Matthias L.
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tiepolt, S., Rullmann, M., Jochimsen, T. H., Gertz, H.-J., Schroeter, M. L., Patt, M., et al. (2020). Quantitative susceptibility mapping in β-Amyloid PET-stratified patients with dementia and healthy controls: A hybrid PET/MRI study. European Journal of Radiology, 131: 109243. doi:10.1016/j.ejrad.2020.109243.


Cite as: http://hdl.handle.net/21.11116/0000-0006-F2E9-2
Abstract
Purpose Post-mortem and in-vivo MRI data suggest an accumulation of iron in the brain of Alzheimer’s disease (AD) patients. The majority of studies in clinically diagnosed AD patients found an increase of iron-sensitive MRI signals in the putamen. As the clinical diagnosis shows only a moderate sensitivity, Aβ-PET was used to further stratify patients with the clinical diagnosis of AD. Aim of this exploratory study was to examine whether Aβ-positive (AD) and Aβ-negative (non-AD) patients differ in their regional magnetic susceptibility compared to healthy controls (HCs) and whether regional susceptibility values correlate with mini mental state examination (MMSE) scores or global Aβ-load. Methods We retrospectively analyzed [11C]PiB PET/MRI data of 11 HCs, 16 AD and 10 non-AD patients. We used quantitative susceptibility mapping (QSM) as iron-sensitive MRI signal measured at the 3 T PET/MR scanner. Global cerebral Aβ-load was determined by composite [11C]PiB SUV ratios. Results Compared to HCs, AD patients showed higher QSM values in putamen (0.049 ± 0.033 vs. 0.002 ± 0.031; p = 0.006), while non-AD patients showed lower QSM values in caudate nucleus (0.003 ± 0.027 vs. 0.051 ± 0.039; p = 0.006). There was a trend towards a significant correlation between putaminal QSM and MMSE values (ρ=-0.340, p = 0.053). In AD patients, global Aβ-load and putaminal QSM values were significantly correlated (ρ=-0.574, p = 0.020). Conclusions These data indicate that AD and non-AD patients may show different cerebral iron pathologies which might be detectable by QSM MRI, and might be linked to neurodegeneration. Overall, the data encourage further investigations in well-defined patient cohorts to clarify the value of QSM/magnetic susceptibility in the course of neurodegenerative diseases and its potential as diagnostic biomarker.