Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Detection of exomoons in simulated light curves with a regularized convolutional neural network

MPG-Autoren
/persons/resource/persons204633

Rodenbeck,  Kai
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103925

Gizon,  Laurent
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Alshehhi, R., Rodenbeck, K., Gizon, L., & Sreenivasan, K. R. (2020). Detection of exomoons in simulated light curves with a regularized convolutional neural network. Astronomy and Astrophysics, 640: A41. doi:10.1051/0004-6361/201937059.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-F962-3
Zusammenfassung
Context. Many moons have been detected around planets in our Solar System, but none has been detected unambiguously around any of the confirmed extrasolar planets.

Aims. We test the feasibility of a supervised convolutional neural network to classify photometric transit light curves of planet-host stars and identify exomoon transits, while avoiding false positives caused by stellar variability or instrumental noise.

Methods. Convolutional neural networks are known to have contributed to improving the accuracy of classification tasks. The network optimization is typically performed without studying the effect of noise on the training process. Here we design and optimize a 1D convolutional neural network to classify photometric transit light curves. We regularize the network by the total variation loss in order to remove unwanted variations in the data features.

Results. Using numerical experiments, we demonstrate the benefits of our network, which produces results comparable to or better than the standard network solutions. Most importantly, our network clearly outperforms a classical method used in exoplanet science to identify moon-like signals. Thus the proposed network is a promising approach for analyzing real transit light curves in the future.