English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

DNA nanotechnology: engineering light‐responsive contractile actomyosin networks with DNA nanotechnology (Adv. Biosys. 9/2020)

MPS-Authors
/persons/resource/persons232747

Jahnke,  Kevin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons140010

Weiss,  Marian
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons249566

Weber,  Cornelia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons84351

Platzman,  Ilia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons220391

Göpfrich,  Kerstin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jahnke, K., Weiss, M., Weber, C., Platzman, I., Göpfrich, K., & Spatz, J. P. (2020). DNA nanotechnology: engineering light‐responsive contractile actomyosin networks with DNA nanotechnology (Adv. Biosys. 9/2020). Advanced Biosystems, 4(9): 2070093, pp. 1-1. doi:10.1002/adbi.202070093.


Cite as: http://hdl.handle.net/21.11116/0000-0006-F89A-5
Abstract
In article number 2000102, Ilia Platzman, Kerstin Göpfrich, Joachim P. Spatz, and co‐workers engineer minimal contractile actomyosin networks for synthetic cells. They employ DNA nanotechnology combined with light‐triggered actuation to control the contraction dynamics. Symmetry breaking is achieved and quantified in cell‐sized compartments, showcasing how an engineering approach to synthetic biology can provide a shortcut toward complex function.