English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Homologation of the Fischer Indolization: A Quinoline Synthesis via Homo‐Diaza‐Cope Rearrangement

MPS-Authors
/persons/resource/persons230441

Gerosa,  Gabriela Guillermina
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons250585

Schwengers,  Sebastian Armin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons250587

Maji,  Rajat
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132969

De,  Chandra Kanta
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

anie.202005798.pdf
(Postprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Gerosa, G. G., Schwengers, S. A., Maji, R., De, C. K., & List, B. (2020). Homologation of the Fischer Indolization: A Quinoline Synthesis via Homo‐Diaza‐Cope Rearrangement. Angewandte Chemie International Edition, 59(46), 20485-20488. doi:10.1002/anie.202005798.


Cite as: https://hdl.handle.net/21.11116/0000-0007-3111-E
Abstract
We disclose a new Brønsted acid promoted quinoline synthesis, proceeding via homo‐diaza‐Cope rearrangement of N‐aryl‐N′‐cyclopropyl hydrazines. Our strategy can be considered a homologation of Fischer's classical indole synthesis and delivers 6‐membered N‐heterocycles, including previously inaccessible pyridine derivatives. This approach can also be used as a pyridannulation methodology toward constructing polycyclic polyheteroaromatics. A computational analysis has been employed to probe plausible activation modes and to interrogate the role of the catalyst.