English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cytochrome c Oxidase:  Catalytic Cycle and Mechanisms of Proton Pumping-A Discussion

MPS-Authors
/persons/resource/persons137800

Michel,  Hartmut       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Michel, H. (1999). Cytochrome c Oxidase:  Catalytic Cycle and Mechanisms of Proton Pumping-A Discussion. Biochemistry, 38(46), 15129-15140. doi:10.1021/bi9910934.


Cite as: https://hdl.handle.net/21.11116/0000-0006-FBEA-8
Abstract
Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water, a process in which four electrons, four protons, and one molecule of oxygen are consumed. The reaction is coupled to the pumping of four additional protons across the membrane. According to the currently accepted concept, the pumping of all four protons occurs after the binding of oxygen to the reduced enzyme and is exclusively coupled to the last two electron transfer steps. A careful analysis of the existing data shows that there is no experimental evidence for this paradigm. It is more likely that only three protons are pumped during the second half of the catalytic cycle of cytochrome c oxidase after the reaction with oxygen. In this article a variant of a recent mechanistic model of proton pumping by electrostatic repulsion is discussed. It is based on the electroneutrality principle in a way that in the catalytic cycle each electron transfer to the membrane-embedded electron acceptors is charge-compensated by uptake of one proton. The mechanism takes into account the findings with mutant cytochrome c oxidases and explains the results of many recent experiments, including the effects of hydrogen peroxide.