日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Malmström, J., Beck, M., Schmidt, A., Lange, V., Deutsch, E. W., & Aebersold, R. (2009). Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature, 460(11), 762-765. doi:10.1038/nmeth.1390.


引用: https://hdl.handle.net/21.11116/0000-0007-023C-4
要旨
Mass-spectrometry-based methods for relative proteome quantification have broadly affected life science research. However, important research directions, particularly those involving mathematical modelling and simulation of biological processes, also critically depend on absolutely quantitative data--that is, knowledge of the concentration of the expressed proteins as a function of cellular state. Until now, absolute protein concentration measurements of a considerable fraction of the proteome (73%) have only been derived from genetically altered Saccharomyces cerevisiae cells, a technique that is not directly portable from yeast to other species. Here we present a mass-spectrometry-based strategy to determine the absolute quantity, that is, the average number of protein copies per cell in a cell population, for a large fraction of the proteome in genetically unperturbed cells. Applying the technology to the human pathogen Leptospira interrogans, a spirochete responsible for leptospirosis, we generated an absolute protein abundance scale for 83% of the mass-spectrometry-detectable proteome, from cells at different states. Taking advantage of the unique cellular dimensions of L. interrogans, we used cryo-electron tomography morphological measurements to verify, at the single-cell level, the average absolute abundance values of selected proteins determined by mass spectrometry on a population of cells. Because the strategy is relatively fast and applicable to any cell type, we expect that it will become a cornerstone of quantitative biology and systems biology.