Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Topological phonon transport in an optomechanical system

MPG-Autoren

Shah,  Tirth
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;
Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg;

/persons/resource/persons201154

Pfeifer,  Hannes
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons216187

Brendel,  Christian
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons228533

Peano,  Vittorio
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201125

Marquardt,  Florian
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;
Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2009.06174.pdf
(beliebiger Volltext), 19MB

Ergänzendes Material (frei zugänglich)

2020_Topological_phonon.png
(Ergänzendes Material), 98KB

Zitation

Ren, H., Shah, T., Pfeifer, H., Brendel, C., Peano, V., Marquardt, F., et al. (2020). Topological phonon transport in an optomechanical system. arXiv, 2009.06174.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-0286-F
Zusammenfassung
Recent advances in cavity-optomechanics have now made it possible to use light not just as a passive measuring device of mechanical motion, but also to manipulate the motion of mechanical objects down to the level of individual quanta of vibrations (phonons). At the same time, microfabrication techniques have enabled small-scale optomechanical circuits capable of on-chip manipulation of mechanical and optical signals. Building on these developments, theoretical proposals have shown that larger scale optomechanical arrays can be used to modify the propagation of phonons, realizing a form of topologically protected phonon transport. Here, we report the observation of topological phonon transport within a multiscale optomechanical crystal structure consisting of an array of over 800 cavity-optomechanical elements. Using sensitive, spatially resolved optical read-out we detect thermal phonons in a 0.325−0.34GHz band traveling along a topological edge channel, with substantial reduction in backscattering. This represents an important step from the pioneering macroscopic mechanical systems work towards topological phononic systems at the nanoscale, where hypersonic frequency (≳GHz) acoustic wave circuits consisting of robust delay lines and non-reciprocal elements may be implemented. Owing to the broadband character of the topological channels, the control of the flow of heat-carrying phonons, albeit at cryogenic temperatures, may also be envisioned.