Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Data accuracy and resolution in particle sizing by dynamic light scattering

MPG-Autoren
/persons/resource/persons137861

Ruf,  Horst
Molecular Biophysics Group, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ruf, H. (1993). Data accuracy and resolution in particle sizing by dynamic light scattering. Advances in Colloid and Interface Science, 46, 333-342. doi:10.1016/0001-8686(93)80047-F.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-0991-B
Zusammenfassung
The noise levels and the decay characteristics in experimental data from dynamic light scattering measurements determine the number of details of continuous size distributions that can be resolved. Here, a procedure is described that allows one to obtain resolution limits empirically from experimental data on hand. This is done by comparing differences of autocorrelation functions associated with size distributions of different complexity with noise in the experimental data. Size distributions of rather different complexity but related to autocorrelation functions that describe the experimental data nearly equally well are obtained from series of regularized inversions carried out by the size distribution algorithm CONTIN. The procedure is demonstrated with two data sets of different noise content. It is shown that a monomodal size distribution with a relative width (standard deviation/average radius) of about 0.2 can be determined with a high accuracy, when the residuals in data of the first order autocorrelation function are of the order of 10−4. A bimodal size distribution with narrow peaks of relative widths of about 0.05 and a size ratio of about 3:2, the autocorrelation function of which describes these data equally well, cannot be resolved from this level of noise. If data accuracy is increased about ten fold, it should be possible to distinguish between these two quite different size distributions and to make a decision on whether the underlying size distribution is actually a monomodal or a bimodal one. To obtain data of such high statistical accuracy would imply a rather long measurement duration yet.