日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Analysis of a putative voltage-gated prokaryotic potassium channel

MPS-Authors
/persons/resource/persons250867

Ungar,  Daniel
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137691

Haase,  Winfried
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137774

Lewitzki,  Erwin
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137863

Ruiz,  Teresa
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137849

Reiländer,  Helmut
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137800

Michel,  Hartmut       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Ungar, D., Barth, A., Haase, W., Kauntzinger, A., Lewitzki, E., Ruiz, T., Reiländer, H., & Michel, H. (2001). Analysis of a putative voltage-gated prokaryotic potassium channel. European Journal of Biochemistry, 268(20), 5386-5396. doi:10.1046/j.0014-2956.2001.02477.x.


引用: https://hdl.handle.net/21.11116/0000-0007-0BD2-0
要旨
Most of the completely sequenced prokaryotic genomes contain genes of potassium channel homologues, but there is still not much known about the role of these proteins in prokaryotes. Here we describe the large-scale overproduction and purification of a prokaryotic voltage-gated potassium channel homologue, Kch, from Escherichia coli. After successful overproduction of the protein, a specific increase in the potassium permeability of the cells was found. Kch could be purified in large amounts using classical purification methods to prevent aggregation of the protein. The physiological state of the protein was revealed to be a homotetramer and the protein was shown to be localized to the cytoplasmic membrane of the cells. In the course of the localization studies, we found a specific increase in the density of the cytoplasmic membrane on Kch production. This was linked to the observed increase in the protein to lipid ratio in the membranes. Another observed change in the membrane composition was an increase in the cardiolipin to phosphatidylglycerol ratio, which may indicate a specific cardiolipin requirement of Kch. On the basis of some of our results, we discuss a function for Kch in the maintenance of the membrane potential in E. coli.