English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thermoelectric properties of n-type half-Heusler NbCoSn with heavy-element Pt substitution

MPS-Authors
/persons/resource/persons209327

Serrano-Sánchez,  Federico
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons247116

Le,  Congcong
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126525

Auffermann,  Gudrun
Gudrun Auffermann, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons209329

Fu,  Chenguang
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Serrano-Sanchez_Thermoelectric.pdf
(Publisher version), 901KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Serrano-Sánchez, F., Luo, T., Yu, J., Xie, W., Le, C., Auffermann, G., et al. (2020). Thermoelectric properties of n-type half-Heusler NbCoSn with heavy-element Pt substitution. Journal of Materials Chemistry A, 8(29), 14822-14828. doi:10.1039/d0ta04644b.


Cite as: https://hdl.handle.net/21.11116/0000-0007-0C97-2
Abstract
Half-Heusler compounds with a valence electron count of 18, including ZrNiSn, ZrCoSb, and NbFeSb, are good thermoelectric materials owing to favorable electronic structures. Previous computational studies had predicted a high electrical power factor in another half-Heusler compound NbCoSn, but it has not been extensively investigated experimentally. Herein, the synthesis, structural characterization, and thermoelectric properties of the heavy-element Pt-substituted NbCoSn compounds are reported. Pt is found to be an effective substitute enabling the optimization of electrical power factor and simultaneously leading to a strong point defect scattering of phonons and the suppression of lattice thermal conductivity. Post-annealing significantly improves the carrier mobility, which is ascribed to the decreased grain boundary scattering of electrons. As a result, a maximum power factor of similar to 3.4 mW m(-1)K(-2)is obtained at 600 K. In conjunction with the reduced lattice thermal conductivity, a maximum figure of meritzTof similar to 0.6 is achieved at 773 K for the post-annealed NbCo0.95Pt0.05Sn, an increase of 100% compared to that of NbCoSn. This work highlights the important roles that the dopant element and microstructure play in the thermoelectric properties of half-Heusler compounds.