Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multiple States in Turbulent Large-Aspect-Ratio Thermal Convection: What Determines the Number of Convection Rolls?

MPG-Autoren
/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173662

Shishkina,  Olga
Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wang, Q., Verzicco, R., Lohse, D., & Shishkina, O. (2020). Multiple States in Turbulent Large-Aspect-Ratio Thermal Convection: What Determines the Number of Convection Rolls? Physical Review Letters, 125(7): 074501. doi:10.1103/PhysRevLett.125.074501.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-504F-7
Zusammenfassung
Wall-bounded turbulent flows can take different statistically stationary turbulent states, with different transport properties, even for the very same values of the control parameters. What state the system takes depends on the initial conditions. Here we analyze the multiple states in large-aspect ratio (Γ) two-dimensional turbulent Rayleigh-Bénard flow with no-slip plates and horizontally periodic boundary conditions as model system. We determine the number n of convection rolls, their mean aspect ratios Γr=Γ/n, and the corresponding transport properties of the flow (i.e., the Nusselt number Nu), as function of the control parameters Rayleigh (Ra) and Prandtl number. The effective scaling exponent β in Nu∼Raβ is found to depend on the realized state and thus Γr, with a larger value for the smaller Γr. By making use of a generalized Friedrichs inequality, we show that the elliptical shape of the rolls and viscous damping determine the Γr window for the realizable turbulent states. The theoretical results are in excellent agreement with our numerical finding 2/3≤Γr≤4/3, where the lower threshold is approached for the larger Ra. Finally, we show that the theoretical approach to frame Γr also works for free-slip boundary conditions.