English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Time of emergence and large ensemble intercomparison for ocean biogeochemical trends

MPS-Authors
/persons/resource/persons37188

Ilyina,  Tatiana       
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons230195

Takano,  Yohei
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2019GB006453.pdf
(Publisher version), 9MB

Supplementary Material (public)

gbc21007-sup-0001-2019gb006453-si.pdf
(Supplementary material), 51MB

Citation

Schlunegger, S., Rodgers, K. B., Sarmiento, J. L., Ilyina, T., Dunne, J. P., Takano, Y., et al. (2020). Time of emergence and large ensemble intercomparison for ocean biogeochemical trends. Global Biogeochemical Cycles, 34: e2019GB006453. doi:10.1029/2019GB006453.


Cite as: https://hdl.handle.net/21.11116/0000-0007-0F82-6
Abstract
Anthropogenically forced changes in ocean biogeochemistry are underway and critical for the ocean carbon sink and marine habitat. Detecting such changes in ocean biogeochemistry will require quantification of the magnitude of the change (anthropogenic signal) and the natural variability inherent to the climate system (noise). Here we use Large Ensemble (LE) experiments from four Earth system models (ESMs) with multiple emissions scenarios to estimate Time of Emergence (ToE) and partition projection uncertainty for anthropogenic signals in five biogeochemically important upper-ocean variables. We find ToEs are robust across ESMs for sea surface temperature and the invasion of anthropogenic carbon; emergence time scales are 20-30 yr. For the biological carbon pump, and sea surface chlorophyll and salinity, emergence time scales are longer (50+ yr), less robust across the ESMs, and more sensitive to the forcing scenario considered. We find internal variability uncertainty, and model differences in the internal variability uncertainty, can be consequential sources of uncertainty for projecting regional changes in ocean biogeochemistry over the coming decades. In combining structural, scenario, and internal variability uncertainty, this study represents the most comprehensive characterization of biogeochemical emergence time scales and uncertainty to date. Our findings delineate critical spatial and duration requirements for marine observing systems to robustly detect anthropogenic change.