Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep–wake states

MPG-Autoren
/persons/resource/persons182611

Trevisiol,  A.
Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182201

Hirrlinger,  J.
Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182320

Nave,  K.-A.
Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3254180.pdf
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Natsubori, A., Tsunematsu, T., Karashima, A., Imamura, H., Kabe, N., Trevisiol, A., et al. (2020). Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep–wake states. Communications Biology, 3(1): 491. doi:10.1038/s42003-020-01215-6.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-2923-1
Zusammenfassung
Whilst the brain is assumed to exert homeostatic functions to keep the cellular energy status constant under physiological conditions, this has not been experimentally proven. Here, we conducted in vivo optical recordings of intracellular concentration of adenosine 5’-triphosphate (ATP), the major cellular energy metabolite, using a genetically encoded sensor in the mouse brain. We demonstrate that intracellular ATP levels in cortical excitatory neurons fluctuate in a cortex-wide manner depending on the sleep-wake states, correlating with arousal. Interestingly, ATP levels profoundly decreased during rapid eye movement sleep, suggesting a negative energy balance in neurons despite a simultaneous increase in cerebral hemodynamics for energy supply. The reduction in intracellular ATP was also observed in response to local electrical stimulation for neuronal activation, whereas the hemodynamics were simultaneously enhanced. These observations indicate that cerebral energy metabolism may not always meet neuronal energy demands, consequently resulting in physiological fluctuations of intracellular ATP levels in neurons.