English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jenni, L., Jenni-Eiermann, S., Spina, F., & Schwabl, H. (2000). Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 278(5), R1182-R1189. doi:10.1152/ajpregu.2000.278.5.R1182.


Cite as: https://hdl.handle.net/21.11116/0000-0007-12BF-E
Abstract
During long-term fasting at rest, protein utilization is maintained at low levels until it increases at a threshold adiposity. This study examines 1) whether such a shift in energy substrate use also occurs during endurance exercise while fasting, 2) the role of corticosterone, and 3) the adrenocortical response to an acute stressor. Ten species of migrating birds caught after an endurance flight over at least 500 km were examined. Plasma uric acid and corticosterone levels were low in birds with fat stores >5% of body mass and high in birds with smaller fat stores. Corticosterone levels were very high in birds with no visible fat stores and emaciated breast muscles. Corticosterone levels increased with handling time only in birds with large fat stores. These findings suggest that 1) migrating birds with appreciable fat stores are not stressed by endurance flight, 2) a metabolic shift (increased protein breakdown), regulated by an endocrine shift (medium corticosterone levels), occurs at a threshold adiposity, as observed in birds at rest, 3) adrenocortical response to an acute stressor is inhibited after this shift, and 4) an adrenocortical response typical for an emergency situation (high corticosterone levels) is only reached when muscle protein is dangerously low.