English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural basis for antibiotic action of the B1 antivitamin 2′-methoxy-thiamine

MPS-Authors
/persons/resource/persons251030

Rabe von Pappenheim,  F.
Department of Structural Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons211470

Aldeghi,  M.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14970

de Groot,  B. L.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons246051

Tittmann,  K.
Department of Structural Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

3254675-Suppl.zip
(Supplementary material), 28MB

Citation

Rabe von Pappenheim, F., Aldeghi, M., Shome, B., Begley, T., de Groot, B. L., & Tittmann, K. (2020). Structural basis for antibiotic action of the B1 antivitamin 2′-methoxy-thiamine. Nature Chemical Biology, 16(11), 1237-1245. doi:10.1038/s41589-020-0628-4.


Cite as: https://hdl.handle.net/21.11116/0000-0007-152D-0
Abstract
The natural antivitamin 2′-methoxy-thiamine (MTh) is implicated in the suppression of microbial growth. However, its mode of action and enzyme-selective inhibition mechanism have remained elusive. Intriguingly, MTh inhibits some thiamine diphosphate (ThDP) enzymes, while being coenzymatically active in others. Here we report the strong inhibition of Escherichia coli transketolase activity by MTh and unravel its mode of action and the structural basis thereof. The unique 2′-methoxy group of MTh diphosphate (MThDP) clashes with a canonical glutamate required for cofactor activation in ThDP-dependent enzymes. This glutamate is forced into a stable, anticatalytic low-barrier hydrogen bond with a neighboring glutamate, disrupting cofactor activation. Molecular dynamics simulations of transketolases and other ThDP enzymes identify active-site flexibility and the topology of the cofactor-binding locale as key determinants for enzyme-selective inhibition. Human enzymes either retain enzymatic activity with MThDP or preferentially bind authentic ThDP over MThDP, while core bacterial metabolic enzymes are inhibited, demonstrating therapeutic potential.