English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The challenges of estimating the distribution of flight heights from telemetry or altimetry data

MPS-Authors
/persons/resource/persons179415

Safi,  Kamran
Department of Migration, Max Planck Institute of Animal Behavior, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Péron, G., Calabrese, J. M., Duriez, O., Fleming, C. H., García-Jiménez, R., Johnston, A., et al. (2020). The challenges of estimating the distribution of flight heights from telemetry or altimetry data. Animal Biotelemetry, 8(1): 5. doi:10.1186/s40317-020-00194-z.


Cite as: https://hdl.handle.net/21.11116/0000-0007-1B4E-5
Abstract
Global positioning systems (GPS) and altimeters are increasingly used to monitor vertical space use by aerial species, a key aspect of their ecological niche, that we need to know to manage our own use of the airspace, and to protect those species. However, there are various sources of error in flight height data (“height” above ground, as opposed to “altitude” above a reference like the sea level). First the altitude is measured with a vertical error from the devices themselves. Then there is error in the ground elevation below the tracked animals, which translates into error in flight height computed as the difference between altitude and ground elevation. Finally, there is error in the horizontal position of the animals, which translates into error in the predicted ground elevation below the animals. We used controlled field trials, simulations, and the reanalysis of raptor case studies with state-space models to illustrate the effect of improper error management.