Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Moiré nematic phase in twisted double bilayer graphene

MPG-Autoren
/persons/resource/persons221904

Xian,  L. D.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;
Songshan Lake Materials Laboratory, Guangdong;

/persons/resource/persons245033

Kennes,  D. M.
Institute for Theory of Statistical Physics, RWTH Aachen University, and JARA Fundamentals of Future Information Technology;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;
Nano-Bio Spectroscopy Group, Departamento de Físicade Materiales, UPV/EHU;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2009.11645.pdf
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)

suppl.zip
(Ergänzendes Material), 5MB

Zitation

Rubio-Verdú, C., Turkel, S., Song, L., Klebl, L., Samajdar, R., Scheurer, M. S., et al. (2022). Moiré nematic phase in twisted double bilayer graphene. Nature Physics, 18(2), 196-202. doi:10.1038/s41567-021-01438-2.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-1CA9-C
Zusammenfassung
Graphene moiré superlattices display electronic flat bands. At integer fillings of these flat bands, energy gaps due to strong electron–electron interactions are generally observed. However, the presence of other correlation-driven phases in twisted graphitic systems at non-integer fillings is unclear. Here, we report the existence of three-fold rotational (C3) symmetry breaking in twisted double bilayer graphene. Using spectroscopic imaging over large and uniform areas to characterize the direction and degree of C3 symmetry breaking, we find it to be prominent only at energies corresponding to the flat bands and nearly absent in the remote bands. We demonstrate that the magnitude of the rotational symmetry breaking does not depend on the degree of the heterostrain or the displacement field, being instead a manifestation of an interaction-driven electronic nematic phase. We show that the nematic phase is a primary order that arises from the normal metal state over a wide range of doping away from charge neutrality. Our modelling suggests that the nematic instability is not associated with the local scale of the graphene lattice, but is an emergent phenomenon at the scale of the moiré lattice.