User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

K+-dependence of electrogenic transport by the NaK-ATPase


Gropp,  Thiemo
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;


Fendler,  Klaus
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Gropp, T., Cornelius, F., & Fendler, K. (1998). K+-dependence of electrogenic transport by the NaK-ATPase. Biochimica et Biophysica Acta-Biomembranes, 1368(2), 184-200. doi: 10.1016/s0005-2736(97)00162-4.

Cite as: http://hdl.handle.net/21.11116/0000-0007-1D41-0
Charge translocation by the NaK-ATPase from shark rectal gland was measured by adsorption of proteoliposomes to a planar lipid membrane. The proteoliposomes were prepared by reconstitution of purified NaK-ATPase into liposomes consisting of E. coli lipids. The protein was activated by applying an ATP concentration jump produced by photolysis of a protected derivative of ATP, caged ATP. K+ titrations were used to study the effect of K+ on the charge translocation kinetics of the protein. The time-dependent currents obtained after activation of the enzyme with caged ATP were analyzed with a simplified Albers-Post model (E1 k1-- E1ATP k2-- E2P k3-- E1) taking into account the capacitive coupling of the protein to the measuring system. The results of the K+ titrations show a strong dependence of the rate constant k3 on the K+ concentration at the extracellular side of the protein, indicating the K+ activated dephosphorylation reaction. In contrast, k1 and k2 remained constant. The K+ dependence of the rate k3 could be well described with a K+ binding model with two equivalent binding sites (E2P + 2K+ <==> E2P(K) + K+ <==> E2 P(2K)) followed by a rate limiting reaction (E2P(2K) --> E1(2K)). The half saturating K+ concentration K3,0.5 and the microscopic dissociation constant K3 for the K+ dependence of k3 were 4.5mM and 1.9mM respectively. At saturating K+ concentration the rate constant k3 was approximately 100 s-1. The relative amount of net charge transported during the Nav and the K+ dependent reactions could be determined from the experiments. Our results suggest electroneutral K+ translocation and do not support electrogenic K+ binding in an extracellular access channel. This is compatible with a model where 2 negative charges are cotransported with 3Na+ and 2K+ ions. Error analysis gives an upper limit of 20% charge transported during K+ translocation or during electrogenic K+ binding in a presumptive access channel compared to Na+ translocation.