Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

News from horizons in binary black hole mergers

MPG-Autoren
/persons/resource/persons40522

Bose,  Sukanta
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20661

Krishnan,  Badri
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2003.06215.pdf
(Preprint), 359KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Prasad, V., Gupta, A., Bose, S., Krishnan, B., & Schnetter, E. (2020). News from horizons in binary black hole mergers. Physical Review Letters, 125: 121101. doi:10.1103/PhysRevLett.125.121101.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-1F27-C
Zusammenfassung
In a binary black hole merger, it is known that the inspiral portion of the
waveform corresponds to two distinct horizons orbiting each other, and the
merger and ringdown signals correspond to the final horizon being formed and
settling down to equilibrium. However, we still lack a detailed understanding
of the relation between the horizon geometry in these three regimes and the
observed waveform. Here we show that the well known inspiral chirp waveform has
a clear counterpart on black hole horizons, namely, the shear of the outgoing
null rays at the horizon. We demonstrate that the shear behaves very much like
a compact binary coalescence waveform with increasing frequency and amplitude.
Furthermore, the parameters of the system estimated from the horizon agree with
those estimated from the waveform. This implies that even though black hole
horizons are causally disconnected from us, assuming general relativity to be
true, we can potentially infer some of their detailed properties from
gravitational wave observations.