English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Stimulation by thrombin increases the cytosolic free Na+ concentration in human platelets. Studies with the novel fluorescent cytosolic Na+ indicator sodium-binding benzofuran isophthalate

MPS-Authors
/persons/resource/persons256332

Borin,  Michail
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons256334

Siffert,  Winfried
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Borin, M., & Siffert, W. (1990). Stimulation by thrombin increases the cytosolic free Na+ concentration in human platelets. Studies with the novel fluorescent cytosolic Na+ indicator sodium-binding benzofuran isophthalate. The Journal of Biological Chemistry, 265(32), 19543-50-19550. doi:10.1016/S0021-9258(17)45406-8.


Cite as: https://hdl.handle.net/21.11116/0000-0008-0EFB-F
Abstract
The new fluorescent Na+ indicator sodium-binding benzofuran isophthalate (SBFI) was used for determination of the cytosolic free Na+ concentration, [Na+]i, in human platelets. The dye could be loaded into platelets in the form of its acetoxymethyl ester (SBFI-AM). Calibration of the fluorescence in terms of [Na+]i was done by measuring the 345/385 nm excitation ratio (emission 490 nm) at various extracellular Na+ concentrations, [Na+]o, in the presence of gramicidin D. The 345/385 intensity ratio increased almost linearly when [Na+]i was stepwise raised from 20 to 60 mM. The basal value for [Na+]i was found to be 26.0 +/- 4.5 mM (n = 15). Incubation of platelets in Na+-free buffer decreased [Na+]i, whereas inhibition of the (Na+ + K+)-ATPase by 0.5 mM ouabain increased [Na+]i to 56 +/- 4 mM (n = 4) within 60 min. Activation of Na+/H+ exchange by exposing platelets to propionic acid also raised [Na+]i, and a comparable effect was produced by the Na+/H+ ionophore monensin. Activation of platelets with thrombin (0.1-0.5 unit/ml) also increased the 345/385 nm intensity ratio, an effect that was not seen in Na+-free buffer or after raising intracellular cAMP by treatment of platelets with prostaglandin E1. On the average, [Na+]i was raised to 59.5 +/- 5.3 mM (n = 15) at 10 min after addition of thrombin without a significant decrease for further 10 min. An increase in [Na+]i was also seen when platelets were challenged with the Ca2+ ionophore ionomycin, an effect that did not occur in the absence of Na+o. Our findings confirm earlier reports which demonstrated a rise in [Na+]i in stimulated platelets and show that SBFI is a useful tool for determination of [Na+]i in resting and stimulated platelets.