Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions

MPG-Autoren
/persons/resource/persons144491

Algara-Siller,  Gerardo
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22163

Teschner,  Detre
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max Planck Institute for Chemical Energy Conversion, Department of Heterogeneous Reactions;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max Planck Institute for Chemical Energy Conversion, Department of Heterogeneous Reactions;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1-s2.0-S0306261920313751-main.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Papakonstantinou, G., Algara-Siller, G., Teschner, D., Vidaković-Koch, T., Schlögl, R., & Sundmacher, K. (2020). Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions. Applied Energy, 280: 115911. doi:10.1016/j.apenergy.2020.115911.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-2CB6-B
Zusammenfassung
Understanding degradation phenomena of polymer electrolyte water electrolyzers operating under dynamic conditions is imperative for developing and implementing efficient and reliable means of energy storage from fluctuating and intermittent renewable energy sources. Herein, a commercial membrane electrode assembly with an amorphous IrOx anode is subjected to potential sweeping (1.4–1.8 V) with short and long holds and few steady-state interims for overall 830 h at 60 °C and ambient pressure to simulate frequent alternating idle and nominal operation regimes. Systematic electrochemical diagnostics and physicochemical methods are applied to identify degradation sources. Mild kinetic deactivation (2.6 μV/h) is observed independent on the dynamic protocol, due to loss of electrochemical surface area via crystallization. The amount of Ir dissolved and redeposited in the ionomer anode phase and in the membrane is negligible in comparison to the current state-of-the-art Ir loadings. As compared to kinetic losses, the irreversible resistive losses are one order of magnitude higher and are thought to be caused by the degradation of the membrane close to the anode catalyst layer. These resistive losses are associated specifically with dynamic operation. The two orders of magnitude higher, but recoverable, degradation during steady-state interims is attributed to the growth of inhibiting or long-lived species.