English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae

MPS-Authors
/persons/resource/persons239673

Velsko,  Irina Marie       
Archaeogenetics, Max Planck Institute for the Science of Human History, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Richards, V. P., Velsko, I. M., Alam, T., Zadoks, R. N., Manning, S. D., Pavinski Bitar, P. D., et al. (2019). Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae. Molecular Biology and Evolution, 36(11): msz169, pp. 2572-2590. doi:10.1093/molbev/msz169.


Cite as: https://hdl.handle.net/21.11116/0000-0007-3012-E
Abstract
The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacteria populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated twelve major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan-genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of eleven populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation.