English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Theoretical Study on the Mechanism of Reaction of Ground-State Fe Atoms with Carbon Dioxide

MPS-Authors
There are no MPG-Authors available
External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pantazis, D. A., Tsipis, A. C., & Tsipis, C. A. (2004). Theoretical Study on the Mechanism of Reaction of Ground-State Fe Atoms with Carbon Dioxide. Collection of Czechoslovak Chemical Communications, 69(1), 13-33. doi:10.1135/cccc20040013.


Cite as: http://hdl.handle.net/21.11116/0000-0007-2EC7-6
Abstract
Density functional calculations at the B3LYP level of theory, using the 6-31G(d) and 6-311+G(3df) basis sets, provide a satisfactory description of the geometric and energetic reaction profile of the Fe + CO2 → FeO + CO reaction. The reaction is predicted to be endothermic by 23.24 kcal/mol at the B3LYP/6-311+G(3df)//B3LYP/6-31G(d) level of theory and to proceed by formation of either a Fe(η2-OCO) or a Fe(η3-OCO) intermediate. The Fe(η2-OCO) intermediate in the 5A' ground state is weakly bound with respect to Fe(5D) and CO2 dissociation products by 0.78 (2.88) kcal/mol at the B3LYP/6-31G(d) (B3LYP/6-311+ G(3df)//B3LYP/6-31G(d)) levels of theory. In contrast, the Fe(η3-OCO) intermediate in the 5A1 ground state is unbound with respect to Fe(5D) and CO2 dissociation products by 8.27 (11.15) kcal/mol at the same levels of theory. However, both intermediates are strongly bound relative to the separated Fe+(6D) and [CO2]- anion; the computed bond dissociation energies for the Fe(η2-OCO) and Fe(η3-OCO) intermediates are 207.33 and 198.28 kcal/mol in terms of ∆E0 at the B3LYP/6-31G(d), respectively. In the Fe(η2-OCO) and Fe(η3-OCO) intermediates, an intramolecular insertion reaction of the Fe atom to O-C bond takes place yielding the isomeric OFe(η1-CO) and OFe(η1-OC) products, respectively, with a relatively low activation barrier of 25.24 (21.69) and 26.36 (23.38) kcal/mol at the B3LYP/6-31G(d) (B3LYP/6-311+G(3df)//B3LYP/6-31G(d)) levels of theory, respectively. The calculated structures, relative stability and bonding properties of all stationary points are discussed with respect to computed electronic and spectroscopic properties, such as charge density distribution and harmonic vibrational frequencies.