日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Site specific and localized structural displacements in open structured multimetallic oxides

MPS-Authors
/persons/resource/persons41515

Lunkenbein,  Thomas
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons134632

Masliuk,  Liudmyla
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons200441

Plodinec,  Milivoj
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons144491

Algara-Siller,  Gerardo
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22181

Trunschke,  Annette
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Lunkenbein, T., Masliuk, L., Plodinec, M., Algara-Siller, G., Jung, S., Jastak, M., Kube, P., Trunschke, A., & Schlögl, R. (2020). Site specific and localized structural displacements in open structured multimetallic oxides. Nanoscale, 12(12), 6759-6766. doi:10.1039/c9nr09041j.


引用: https://hdl.handle.net/21.11116/0000-0007-D2DA-6
要旨
The structures of solids can locally differ from the macroscopic picture obtained by structural averaging techniques. This difference significantly influences the performance of any functional material. Measurements of these local structures are challenging. Thus, the description of defects is often disregarded. However, in order to understand the functionality, such irregularities have to be investigated. Here, we present a high resolution scanning transmission electron microscopic (STEM) study revealing local structural irregularities in open structured oxides using catalytically active orthorhombic (Mo,V,Te,Nb)O-x as a complex example. Detailed analysis of annular dark field- and annular bright field-STEM images reveal site specific local structural displacements of individual framework and channel sites in the picometer range. These experimental observables can be considered as an important structural addendum for theoretical modelling and should be implemented into the existing data in order to quantify site specific potential energies and stresses. This information can further be used to describe the impact of the structure on the catalytic performance in greater detail.