English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Re‐Face Stereospecificity of Methylenetetrahydromethanopterin and Methylenetetrahydrofolate Dehydrogenases is Predetermined by Intrinsic Properties of the Substrate

MPS-Authors
/persons/resource/persons137717

Hutter,  Michael C.
Max Planck Research Group of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137701

Helms,  Volkhard
Max Planck Research Group of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bartoschek, S., Buurman, G., Thauer, R. K., Geierstanger, B. H., Weyrauch, J. P., Griesinger, C., et al. (2001). Re‐Face Stereospecificity of Methylenetetrahydromethanopterin and Methylenetetrahydrofolate Dehydrogenases is Predetermined by Intrinsic Properties of the Substrate. ChemBioChem: A European Journal of Chemical Biology, 2, 530-541. doi:10.1002/1439-7633(20010803)2:7/8<530:AID-CBIC530>3.0.CO;2-0.


Cite as: https://hdl.handle.net/21.11116/0000-0007-3390-C
Abstract
Four different dehydrogenases are known that catalyse the reversible dehydrogenation of N5,N10‐ethylenetetrahydromethanopterin (methylene‐H4MPT) or N5,N10‐methylenetetrahydrofolate (methylene‐H4F) to the respective N5,N10‐methenyl compounds. Sequence comparison indicates that the four enzymes are phylogenetically unrelated. They all catalyse the Re‐face‐stereospecific removal of the pro‐R hydrogen atom of the coenzyme's methylene group. The Re‐face stereospecificity is in contrast to the finding that in solution the pro‐S hydrogen atom of methylene‐H4MPT and of methylene‐H4F is more reactive to heterolytic cleavage. For a better understanding we determined the conformations of methylene‐H4MPT in solution and when enzyme‐bound by using NMR spectroscopy and semiempirical quantum mechanical calculations. For the conformation free in solution we find an envelope conformation for the imidazolidine ring, with the flap at N10. The methylene pro‐S C−H bond is anticlinal and the methylene pro‐R C−H bond is synclinal to the lone electron pair of N10. Semiempirical quantum mechanical calculations of heats of formation of methylene‐H4MPT and methylene‐H4F indicate that changing this conformation into an activated one in which the pro‐S C−H bond is antiperiplanar, resulting in the preformation of the leaving hydride, would require a ΔΔequation image of +53 kJ mol−1 for methylene‐H4MPT and of +51 kJ mol−1 for methylene‐H4F. This is almost twice the energy required to force the imidazolidine ring in the enzyme‐bound conformation of methylene‐H4MPT (+29 kJ mol−1) or of methylene‐H4F (+35 kJ mol−1) into an activated conformation in which the pro‐R hydrogen atom is antiperiplanar to the lone electron pair of N10. The much lower energy for pro‐R hydrogen activation thus probably predetermines the Re‐face stereospecificity of the four dehydrogenases. Results are also presented explaining why the chemical reduction of methenyl‐H4MPT+ and methenyl‐H4F+ with NaBD4 proceeds Si‐face‐specific, in contrast to the enzyme‐catalysed reaction.