English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Label-freemonitoring and manipulation of microfluidic water-in-oil droplets

MPS-Authors
/persons/resource/persons201484

Frey,  Christoph
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons242884

Weishaupt,  Klaus
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons84351

Platzman,  Ilia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Frey, C., Pfeil, J., Neckernuss, T., Geiger, D., Weishaupt, K., Platzman, I., et al. (2020). Label-freemonitoring and manipulation of microfluidic water-in-oil droplets. View, 1(4): 20200101, pp. 1-11. doi:10.1002/VIW.20200101.


Cite as: http://hdl.handle.net/21.11116/0000-0007-362B-D
Abstract
Droplet‐based microfluidic technology offers several benefits: the integration of multiple laboratory functions into a single microfabricated chip, manual intervention possibilities, minimal sample consumption, and increased analysis speed and data precision. These advantages have boosted the widespread application of this technology in biological and biomedical research. Despite recent progress, considerable challenges remain to be addressed for end‐user applications. This especially concerns the difficulty of creating powerful and easy to implement methods for real‐time analysis and active manipulation of passing droplets. Toward this end, we developed a very sensitive optical device equipped with smart algorithms for real‐time label‐free monitoring and active manipulation of passing droplets. We demonstrate the advanced properties of the developed optical device by measuring different droplet production parameters as well as the label‐free detection of cells in droplets. Moreover, the newly developed technology was connected with a function generator system to allow for subsequent manipulation of the monitored droplets based on the measured parameters. As an example, we performed electric field‐mediated, label‐free sorting of cell‐containing droplets from empty ones. Furthermore, we achieved an efficient size‐based separation of droplets. We envision that the developed optical device will be a useful tool for the online monitoring of passing droplets and will be implemented for the integration and automation of various droplet‐based microfluidic functional units.