English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

All-electron scalar relativistic basis sets for the 6p elements

MPS-Authors
/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pantazis, D. A., & Neese, F. (2012). All-electron scalar relativistic basis sets for the 6p elements. Theoretical Chemistry Accounts, 131(11): 1292. doi:10.1007/s00214-012-1292-x.


Cite as: https://hdl.handle.net/21.11116/0000-0007-4384-8
Abstract
New segmented all-electron relativistically contracted (SARC) basis sets have been developed for the elements 81Tl–86Rn, thus extending the SARC family of all-electron basis sets to include the 6p block. The SARC basis sets are separately contracted for the second-order Douglas–Kroll–Hess and the zeroth-order regular approximation scalar relativistic Hamiltonians. Their compact size and segmented construction are best suited to the requirements of routine density functional theory (DFT) applications. Evaluation of the basis sets is performed in terms of incompleteness and contraction errors, orbital properties, ionization energies, electron affinities, and atomic polarizabilities. From these atomic metrics and from computed basis set superposition errors for a series of homonuclear dimers, it is shown that the SARC basis sets achieve a good balance between accuracy and size for efficient all-electron scalar relativistic DFT applications.