English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electron hydrodynamics in anisotropic materials

MPS-Authors
/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Varnavides, G., Jermyn, A. S., Anikeeva, P., Felser, C., & Narang, P. (2020). Electron hydrodynamics in anisotropic materials. Nature Communications, 11(1): 4710, pp. 1-6. doi:10.1038/s41467-020-18553-y.


Cite as: https://hdl.handle.net/21.11116/0000-0007-4035-5
Abstract
Rotational invariance strongly constrains the viscosity tensor of classical fluids. When this symmetry is broken in anisotropic materials a wide array of novel phenomena become possible. We explore electron fluid behaviors arising from the most general viscosity tensors in two and three dimensions, constrained only thermodynamics and crystal symmetries. We find nontrivial behaviors in both two- and three-dimensional materials, including imprints of the crystal symmetry on the large-scale flow pattern. Breaking time-reversal symmetry introduces a non-dissipative Hall component to the viscosity tensor, and while this vanishes for 3D isotropic systems we show it need not for anisotropic materials. Further, for such systems we find that the electronic fluid stress can couple to the vorticity without breaking time-reversal symmetry. Our work demonstrates the anomalous landscape for electron hydrodynamics in systems beyond graphene, and presents experimental geometries to quantify the effects of electronic viscosity. In some materials electrons can behave hydrodynamically, exhibiting phenomena associated with classical viscous fluids. In this theory work, the authors show that the symmetries of the crystal lattices in which the electrons reside can lead to additional unique hydrodynamic effects.