Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions

MPG-Autoren
/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevLett.125.147601.pdf
(Verlagsversion), 457KB

Ergänzendes Material (frei zugänglich)

sup.pdf
(Ergänzendes Material), 170KB

Zitation

Klöckner, C., Karrasch, C., & Kennes, D. M. (2020). Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions. Physical Review Letters, 125(14): 147601. doi:10.1103/PhysRevLett.125.147601.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-4261-1
Zusammenfassung
We employ a novel, unbiased renormalization-group approach to investigate nonequilibrium phase transitions in infinite lattice models. This allows us to address the delicate interplay of fluctuations and ordering tendencies in low dimensions out of equilibrium. We study a prototypical model for the metal to insulator transition of spinless interacting fermions coupled to electronic baths and driven out of equilibrium by a longitudinal static electric field. The closed system features a Berezinskii-Kosterlitz-Thouless transition between a metallic and a charge-ordered phase in the equilibrium limit. We compute the nonequilibrium phase diagram and illustrate a highly nonmonotonic dependence of the phase boundary on the strength of the electric field: for small fields, the induced currents destroy the charge order, while at higher electric fields it reemerges due to many-body Wannier-Stark localization physics. Finally, we show that the current in such an interacting nonequilibrium system can counter-intuitively flow opposite to the direction of the electric field. This nonequilibrium steady state is reminiscent of an equilibrium distribution function with an effective negative temperature.