English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Use of Antibody Fragments (Fv) in Immunocytochemistry

MPS-Authors
/persons/resource/persons250830

Kleymann,  Gerald
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons249431

Ostermeier,  Christian
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons251932

Heitmann,  Karin
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137691

Haase,  Winfried
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137800

Michel,  Hartmut       
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kleymann, G., Ostermeier, C., Heitmann, K., Haase, W., & Michel, H. (1995). Use of Antibody Fragments (Fv) in Immunocytochemistry. Journal of Histochemistry and Cytochemistry, 43(6), 607-614. doi:10.1177/43.6.7769231.


Cite as: https://hdl.handle.net/21.11116/0000-0007-44AE-9
Abstract
We developed a novel antibody fragment (Fv) technique for localization and determination of the surface topology of membrane protein complexes by immunogold electron microscopy. Several hybridoma cell lines producing murine monoclonal antibodies (MAbs) raised against bacterial membrane proteins were established. The cDNAs coding for the variable domains of the MAbs were cloned and expressed in Escherichia coli. The engineered Fv fragments served as trifunctional adapter molecules. The Fv fragment binds to the epitope of the membrane protein. The Strep tag fused to the VH chain was used for one-step affinity purification of the Fv fragments. Immunological detection of the membrane protein-bound Fv fragments in electron microscopy was accomplished either via the Strep tag with colloidal gold-labeled streptavidin or via the c-myc tag, which was fused to the VL chain, in combination with the c-myc tag-specific antibody 9E10 and a colloidal gold-labeled secondary antibody. We examined four Fv fragments directed against the cytochrome c oxidase or the ubiquinol-cytochrome c oxidoreductase of Paracoccus denitrificans and bacteriorhodopsin of Halobacterium halobium to show that this method is generally applicable. In all cases the Fv fragments showed the same results as their corresponding parent antibodies in electron microscopic immunostaining and other applications.