Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Guanine condensates as covalent materials and the concept of cryptopores

MPG-Autoren
/persons/resource/persons251960

Kossmann,  Janina
Nieves Lopez Salas, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons250334

Piankova,  Diana V.
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons212917

Tarakina,  Nadezda V.
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons228884

López-Salas,  Nieves
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kossmann, J., Piankova, D. V., Tarakina, N. V., Heske, J., Kühne, T. D., Schmidt, J., et al. (2021). Guanine condensates as covalent materials and the concept of cryptopores. Carbon, 172, 497-505. doi:10.1016/j.carbon.2020.10.047.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-45C8-A
Zusammenfassung
Simple thermal treatment of guanine at temperatures ranging from 600 to 700 °C leads to C1N1 condensates with unprecedented CO2N2 selectivity when compared to other carbonaceous solid sorbents. Increasing the surface area of the CN condensates in the presence of ZnCl2 salt melts enhances the amount of CO2 adsorbed while preserving the high selectivity values and C1N1 structure. Results indicate that these new materials show a sorption mechanism a step closer to that of natural CO2 caption proteins and based on metal free structural cryptopores.