English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations

MPS-Authors
/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Giannakis, E., Kushta, J., Bruggeman, A., & Lelieveld, J. (2019). Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations. Environmental sciences Europe, 31(1): 93. doi:10.1186/s12302-019-0275-0.


Cite as: https://hdl.handle.net/21.11116/0000-0007-49C5-9
Abstract
Background

In Europe, ammonia (NH3) emissions strongly contribute to fine particulate matter (PM2.5) pollution and associated premature human mortality. The National Emission Ceilings Directive 2016/2284/EU has set an obligation for all European Union countries to reduce the NH3 emissions by 6%, relative to 2005, by 2020. This study aims to assess the costs and benefits of four NH3 emission abatement options for the compliance of the agricultural sector with the commitments of the European air quality regulatory framework. A regional atmospheric model (WRF/Chem) was used to assess the effects of regulating NH3 emissions reductions on PM2.5 concentrations over Europe. Non-market valuation techniques (value of statistical life) were used to monetize the associated health outcomes.
Results

We calculated that 16 out of the 28 EU member states exceeded their 2020 NH3 emission ceilings in 2016. The highest exceedances from the 2020 emission commitment level occurred in Latvia (15%), Germany (12%) and the UK (12%). Simulation of the required NH3 emission reduction by WRF/Chem showed that relatively large reductions in PM2.5 concentrations occur over central-western Europe and the UK. The largest health benefits (> 5% reduction in premature mortality) were found for Scandinavia. The economic benefit from avoided premature deaths over Europe amounts to 14,837 M€/year. The costs of four NH3 emission abatement options, where each would fully achieve the required emission reduction, range from 80 M€/year for low nitrogen feed to 3738 M€/year for low-emission animal housing, with covered manure storage (236 M€/year) and urea fertilizer application (253 M€/year), in between.
Conclusion

Our analysis indicates that the costs of compliance by the agricultural sector with the commitments of the European air quality regulations are much lower than the economic benefit. Thus, much more ambitious reduction commitments for NH3 emissions could be applied by the EU-28. The monetization of the health benefits of NH3 emission abatement policies and the assessment of the implementation costs can help policy-makers devise effective air pollution control programmes.