English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity

MPS-Authors
/persons/resource/persons240587

Baek,  Kheewong
Schulman, Brenda / Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons213292

Schulman,  Brenda
Schulman, Brenda / Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

s41586-020-2601-5.pdf
(Any fulltext), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Shin, D., Mukherjee, R., Grewe, D., Bojkova, D., Baek, K., Bhattacharya, A., et al. (2020). Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 587, 657-662. doi:10.1038/s41586-020-2601-5.


Cite as: https://hdl.handle.net/21.11116/0000-0007-D560-C
Abstract
Biochemical, structural and functional studies on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) papain-like protease PLpro reveal that it regulates host antiviral responses by preferentially cleaving the ubiquitin-like interferon-stimulated gene 15 protein (ISG15) and identify this protease as a potential therapeutic target for coronavirus disease 2019 (COVID-19).
The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread(1,2). PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses(3-5). Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-kappa B pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.