Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Macroscopically ordered water in nanopores

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Köfinger, J., Hummer, G., & Dellago, C. (2008). Macroscopically ordered water in nanopores. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13218-13222. doi:10.1073/pnas.0801448105.

Cite as: https://hdl.handle.net/21.11116/0000-0007-5018-4
Water confined into the interior channels of narrow carbon nanotubes or transmembrane proteins forms collectively oriented molecular wires held together by tight hydrogen bonds. Here, we explore the thermodynamic stability and dipolar orientation of such 1D water chains from nanoscopic to macroscopic dimensions. We show that a dipole lattice model accurately recovers key properties of 1D confined water when compared to atomically detailed simulations. In a major reduction in computational complexity, we represent the dipole model in terms of effective Coulombic charges, which allows us to study pores of macroscopic lengths in equilibrium with a water bath (or vapor). We find that at ambient conditions, the water chains filling the tube are essentially continuous up to macroscopic dimensions. At reduced water vapor pressure, we observe a 1D Ising-like filling/emptying transition without a true phase transition in the thermodynamic limit. In the filled state, the chains of water molecules in the tube remain dipole-ordered up to macroscopic lengths of approximately 0.1 mm, and the dipolar order is estimated to persist for times up to approximately 0.1 s. The observed dipolar order in continuous water chains is a precondition for the use of nanoconfined 1D water as mediator of fast long-range proton transport, e.g., in fuel cells. For water-filled nanotube bundles and membranes, we expect anti-ferroelectric behavior, resulting in a rich phase diagram similar to that of a 2D Coulomb gas.