Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Microscopic theory of light-induced ultrafast skyrmion excitation in transition metal films

MPG-Autoren
/persons/resource/persons249487

Viñas Boström,  E.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41524-022-00735-5.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

41524_2022_735_MOESM1_ESM.pdf
(Ergänzendes Material), 4MB

Zitation

Viñas Boström, E., Rubio, A., & Verdozzi, C. (2022). Microscopic theory of light-induced ultrafast skyrmion excitation in transition metal films. npj Computational Materials, 8(1): 62. doi:10.1038/s41524-022-00735-5.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-531B-E
Zusammenfassung
Magnetic skyrmions are topological excitations of great promise for compact and efficient memory storage. However, to interface skyrmionics with electronic devices requires efficient and reliable ways of creating and destroying such excitations. In this work, we unravel the microscopic mechanism behind ultrafast skyrmion generation by femtosecond laser pulses in transition metal thin films. We employ a theoretical approach based on a two-band electronic model, and show that by exciting the itinerant electronic subsystem with a femtosecond laser ultrafast skyrmion nucleation can occur on a 100 fs timescale. By combining numerical simulations with an analytical treatment of the strong s–d exchange limit, we identify the coupling between electronic currents and the localized d-orbital spins, mediated via Rashba spin–orbit interactions among the itinerant electrons, as the microscopic and central mechanism leading to ultrafast skyrmion generation. Our results show that an explicit treatment of itinerant electron dynamics is crucial to understand optical skyrmion generation.