Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Chirality detection of surface desorption products using photoelectron circular dichroism


Westphal,  G.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;


Schäfer,  T.
Department of Dynamics at Surfaces, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Westphal, G., Wega, J., Dissanayake, R. E. A., & Schäfer, T. (2020). Chirality detection of surface desorption products using photoelectron circular dichroism. The Journal of Chemical Physics, 153(5): 054707. doi:10.1063/5.0014917.

Cite as: http://hdl.handle.net/21.11116/0000-0007-53A8-E
Chirality detection of gas-phase molecules at low concentrations is challenging as the molecular number density is usually too low to perform conventional circular dichroism absorption experiments. In recent years, new spectroscopic methods have been developed to detect chirality in the gas phase. In particular, the angular distribution of photoelectrons after multiphoton laser ionization of chiral molecules using circularly polarized light is highly sensitive to the enantiomeric form of the ionized molecule [multiphoton photoelectron circular dichroism (MP-PECD)]. In this paper, we employ the MP-PECD as an analytic tool for chirality detection of the bicyclic monoterpene fenchone desorbing from a Ag(111) crystal. We record velocity-resolved kinetics of fenchone desorption on Ag(111) using pulsed molecular beams with ion imaging techniques. In addition, we measure temperature-programmed desorption spectra of the same system. Both experiments indicate weak physisorption of fenchone on Ag(111). We combine both experimental techniques with enantiomer-specific detection by recording MP-PECD of desorbing molecules using photoelectron imaging spectroscopy. We can clearly assign the enantiomeric form of the desorption product fenchone in sub-monolayer concentration. The experiment demonstrates the combination of MP-PECD with surface science experiments, paving the way for enantiomer-specific detection of surface reaction products on heterogeneous catalysts for asymmetric synthesis.