English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Reactive species formed upon interaction of water with fine particulate matter from remote forest and polluted urban air

MPS-Authors
/persons/resource/persons192191

Tong,  Haijie
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons187664

Liu,  Fobang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons204194

Filippi,  Alexander
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230415

Wilson,  Jake
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons192193

Arangio,  Andrea M.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons222959

Lelieveld,  Steven
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons192215

Shen,  Fangxia
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons140352

Berkemeier,  Thomas
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tong, H., Liu, F., Filippi, A., Wilson, J., Arangio, A. M., Zhang, Y., et al. (2020). Reactive species formed upon interaction of water with fine particulate matter from remote forest and polluted urban air. Atmospheric Chemistry and Physics Discussions, 20. doi:10.5194/acp-2020-973.


Cite as: https://hdl.handle.net/21.11116/0000-0007-5CC5-4
Abstract
Interaction of water with fine particulate matter leads to the formation of reactive species (RS) that may influence the aging, properties, and health effects of atmospheric aerosols. In this study, we explore the RS yields of fine PM from remote forest (Hyytiälä, Finland) and polluted urban air (Mainz, Germany and Beijing, China) and relate these yields to different chemical constituents and reaction mechanisms. Ultrahigh-resolution mass spectrometry was used to characterize organic aerosol composition, electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique was used to determine the concentrations •OH, O2•−, and carbon- or oxygen-centered organic radicals, and a fluorometric assay was used to quantify H2O2 concentration. The mass-specific yields of radicals were lower for sampling sites with higher concentration of ambient PM2.5 (particles with a diameter < 2.5 µm), whereas the H2O2 yields exhibited no clear trend. The abundances of water-soluble transition metals and aromatics in ambient PM2.5 were positively correlated with the relative fraction of •OH to the totally detected radicals, but negatively correlated with the relative fraction of carbon-centered radicals. Moreover, we found that the relative fractions of different types of radicals formed by ambient PM2.5 were comparable to the surrogate mixtures comprising transition metals, organic hydroperoxide, H2O2, and humic or fulvic acids. Therein humic and fulvic acids exhibited strong radical scavenging effect to substantially decrease the radical yield of mixtures comprising cumene hydroperoxide and Fe2+. The interplay of transition metals (e.g., iron), highly oxidized compounds (e.g., organic hydroperoxides), and complexing agents (e.g., humic or fulvic acids), leads to non-linear concentration dependencies of production and yields of different types of RS. Our findings show that how the composition of PM2.5 influences the amount and nature of RS produced upon interaction with water, which may explain differences in the chemical reactivity and health effects of particulate matter in clean and polluted air.