Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Reaction between CH3C(O)OOH (peracetic acid) and OH in the gas-phase: A combined experimental and theoretical study of the kinetics and mechanism

MPG-Autoren
/persons/resource/persons241689

Berasategui,  Matias
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons127910

Amedro,  Damien
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100898

Crowley,  John N.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Berasategui, M., Amedro, D., Vereecken, L., Lelieveld, J., & Crowley, J. N. (2020). Reaction between CH3C(O)OOH (peracetic acid) and OH in the gas-phase: A combined experimental and theoretical study of the kinetics and mechanism. Atmospheric Chemistry and Physics Discussions, 20. doi:10.5194/acp-2020-658.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-5CCE-B
Zusammenfassung
Peracetic acid (CH3C(O)OOH) is one of the most abundant organic peroxides in the atmosphere, yet the kinetics of its reaction with OH, believed to be the major sink, have been studied only once experimentally. In this work we combine a pulsed-laser photolysis kinetic study of the title reaction with theoretical calculations of the rate coefficient and mechanism. We demonstrate that the rate coefficient is orders of magnitude lower than previously determined, with an experimentally derived upper limit of ≤ 4 × 10−14 cm3 molecule−1 s−1. The relatively low rate coefficient is in good agreement with the theoretical result of 3 × 10−14 cm3 molecule−1 s−1 at 298 K, increasing to ~ 6 × 10−14 in the cold upper troposphere, but with associated uncertainty of a factor-two. The reaction proceeds mainly via abstraction of the peroxidic-hydrogen via a relatively weakly bonded and short-lived pre-reaction complex, in which H-abstraction occurs only slowly due to a high barrier and low tunneling probabilities. Our results imply that the lifetime of CH3C(O)OOH with respect to OH-initiated degradation in the atmosphere is of the order of one year (and not days as previously believed) and that its major sink in the free and upper troposphere is likely to be photolysis, with dry-deposition important in the boundary layer. Similar conclusions can be made for other, saturated peroxy-acids.