Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Luminal transport system for choline+ in relation to the other organic cation transport systems in the rat proximal tubule.

MPG-Autoren
/persons/resource/persons251022

Ullrich,  Karl Julius
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons251308

Rumrich,  Gerhard
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ullrich, K. J., & Rumrich, G. (1996). Luminal transport system for choline+ in relation to the other organic cation transport systems in the rat proximal tubule. Pflügers Archiv: European Journal of Physiology, 432(3), 471-485. doi:10.1007/s004240050159.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-64A6-D
Zusammenfassung
The efflux of [3H] choline+ from the proximal tubular lumen was measured by using the stop-flow microperfusion method. The 2-s efflux of [3H] choline+ follows kinetics with a Michaelis constant, Km = 0.18 mmol x l-1, maximal flux, Jmax = 0.43 pmol x cm-1 x s-1 and a permeability term = 38.0 micron2 (small middle dot)-1. Replacement of Na+by N-methyl-D-glucamine+ or Li+, or a change of luminal pH do not alter choline+ efflux. Replacement of Na+ by Cs+ inhibits 2-s choline+ (0. 01 mmol x l-1) efflux by 22% and replacement by K+ inhibits by 49%, indicating that the electrical potential difference across the brush border membrane acts as driving force for choline+ transport. Comparing the apparent luminal inhibitory constant values for choline (app. Ki,l,choline+) with the chemical structure of inhibiting substrates, it was found that the inhibitory potency of amines with high pKa values, i.e. high basicity, and of quaternary ammonium compounds (tetraethyl to tetrahexylammonium) increases with their hydrophobicity in a similar manner as was observed previously against the contraluminal N1-methylnicotinamide (NMeN+) transporter and the luminal H+ /organic cation (N-methyl-4-phenylpyridinium) (MPP+) exchanger. Independently of their hydrophobicity, an increase in the inhibitory potency of the homologous series of aminoquinolines against the choline+ transporter was observed with increasing pKa values, i.e. increasing basicity, as was found previously against the two other organic cation transporters. A third parameter influencing the interaction with the choline+ transporter is the presence of two amino groups with high pKa values or one amino group and a permanent positive charge, as is documented with the two-ring aminostyryl and rhodamine compounds, as well as three-ring aminoacridine, aminophenanthrene and cyanine compounds. Thus with the aminostyryl, pyridinium+, rhodamine, phenanthridium+ and cyanine+ dyes app.Ki,l,choline+ values of between 0.01 and 0.07 mmol x l-1 have been found. A fourth parameter influencing the choline+ transporter is the presence of an OH group on the C atom next to that bearing the N atom (as in choline+) or an ester-OCOR group (acetylcholine+, butyrylcholine+) or a thioester-SCOR-group (acetylthiocholine+, butyrylthiocholine+); or an -OP(OH)2(OR) group (glycerylphosphoryl-choline+), resulting in app.Ki,l,choline+ values of 0.3-1.0 mmol x l-1. Thus the substrates for the luminal choline+ transporter have general features in common with the luminal H+/organic cation exchanger and the contraluminal organic cation transporter, i.e. hydrophobicity and basicity. Additional parameters for interaction are an OH (or similar) group positioned a favourable distance from the N atom or a second amino/ammonium group in multi-ring compounds.