Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Chemical composition and source attribution of submicron aerosol particles in the summertime Arctic lower troposphere

MPG-Autoren
/persons/resource/persons203213

Köllner,  Franziska
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101255

Schneider,  Johannes
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101066

Klimach,  Thomas
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons206885

Helleis,  Frank
Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100858

Borrmann,  Stephan
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Köllner, F., Schneider, J., Willis, M. D., Schulz, H., Kunkel, D., Bozem, H., et al. (2020). Chemical composition and source attribution of submicron aerosol particles in the summertime Arctic lower troposphere. Atmospheric Chemistry and Physics Discussions, 20. doi:10.5194/acp-2020-742.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-5DA9-3
Zusammenfassung
We use airborne measurements of aerosol particle composition to demonstrate the strong contrast between particle sources and composition within and above the summertime Arctic boundary layer. In-situ measurements from two complementary aerosol mass spectrometers, the ALABAMA and the HR-ToF-AMS, with black carbon measurements from an SP2 are presented. Particle composition analysis was complemented by trace gas measurements, satellite data, and air mass history modeling to attribute particle properties to particle origin and air mass source regions. Particle composition above the summertime Arctic boundary layer was dominated by chemically aged particles, containing elemental carbon, nitrate, ammonium, sulfate, and organic matter. From our analysis, we conclude that the presence of these particles was driven by transport of aerosol and precursor gases from mid-latitudes to Arctic regions. Particularly, elevated concentrations of nitrate, ammonium, and organic matter coincided with time spent over vegetation fires in northern Canada. In parallel, those particles were largely present in high CO environments (> 90 ppbv). Additionally, we observed that the organic-to-sulfate ratio was enhanced with increasing influence from these fires. Besides vegetation fires, particle sources in mid-latitudes further include anthropogenic emissions in Europe, North America, and East Asia. The presence of particles in the Arctic lower free troposphere correlated with time spent over populated and industrial areas in these regions. Further, the size distribution of free tropospheric particles containing elemental carbon and nitrate was shifter to larger diameters compared to particles present within the boundary layer. Moreover, our analysis suggests that organic matter when present in the Arctic free troposphere can partly be identified as low-molecular weight dicarboxylic acids (oxalic, malonic, and succinic acid). Particles containing dicarboxylic acids were largely present when the residence time of air masses outside Arctic regions was high. In contrast, particle composition within the marine boundary layer was largely driven by Arctic regional processes. Air mass history modeling demonstrated that alongside primary sea spray particles, marine-biogenic sources contributed to secondary aerosol formation by trimethylamine, methanesulfonic acid, sulfate, and other organic species.