English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Three North African dust source areas and their geochemical fingerprint

MPS-Authors
/persons/resource/persons220035

Drake,  Nick
Archaeology, Max Planck Institute for the Science of Human History, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jewell, A. M., Drake, N., Crocker, A. J., Bakker, N. L., Kunkelova, T., Bristow, C. S., et al. (2020). Three North African dust source areas and their geochemical fingerprint. Earth and Planetary Science Letters, 116645. doi:10.1016/j.epsl.2020.116645.


Cite as: http://hdl.handle.net/21.11116/0000-0007-5EE2-1
Abstract
North Africa produces more than half of the world's atmospheric dust load. Once entrained into the atmosphere, this dust poses a human health hazard locally. It also modifies the radiative budget regionally, and supplies nutrients that fuel primary productivity across the North Atlantic Ocean and as far afield as the Amazonian Basin. Dust accumulation in deep sea and lacustrine sediments also provides a means to study changes in palaeoclimate, particularly those associated with rainfall climate change. Systematic analysis of satellite imagery has greatly improved our understanding of the trajectories of long-range North African dust plumes, but our knowledge of the dust-producing source regions and our ability to fingerprint their contribution to these export routes is surprisingly limited. Here we report new radiogenic isotope (Sr and Nd) data for sediment samples from known dust-producing substrates (dried river and lake beds), integrate them with published isotope data and weight them for dust source activation. We define three isotopically distinct preferential dust source areas (PSAs): a Western, a Central and an Eastern North African PSA. More data are needed, particularly from the Western PSA, but our results show a change in PSA dust source composition to more radiogenic Nd- and less radiogenic Sr-isotope values from west to east, in line with the overall decreasing age of the underlying bedrock. Our data reveal extreme isotopic heterogeneity within the Chadian region of the Central PSA, including an extremely distinctive geochemical fingerprint feeding the Bodélé Depression, the most active dust source on Earth. Our new analysis significantly improves the reliability by which windblown dust deposits can be geochemically fingerprinted to their distant source regions.