English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains

MPS-Authors
/persons/resource/persons252091

Oudelaar,  A. M.
Lise Meitner Group Genome Organization and Regulation, MPI for Biophysical Chemistry, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Oudelaar, A. M., Davies, J. O. J., Hanssen, L. L. P., Telenius, J. M., Schwessinger, R., Liu, Y., et al. (2018). Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nature Genetics, 50(12), 1744-1751. doi:10.1038/s41588-018-0253-2.


Cite as: http://hdl.handle.net/21.11116/0000-0007-6098-1
Abstract
The promoters of mammalian genes are commonly regulated by multiple distal enhancers, which physically interact within discrete chromatin domains. How such domains form and how the regulatory elements within them interact in single cells is not understood. To address this we developed Tri-C, a new chromosome conformation capture (3C) approach, to characterize concurrent chromatin interactions at individual alleles. Analysis by Tri-C identifies heterogeneous patterns of single-allele interactions between CTCF boundary elements, indicating that the formation of chromatin domains likely results from a dynamic process. Within these domains, we observe specific higher-order structures that involve simultaneous interactions between multiple enhancers and promoters. Such regulatory hubs provide a structural basis for understanding how multiple cis-regulatory elements act together to establish robust regulation of gene expression.