English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

7 Tesla MRI followed by histological 3D reconstructions in whole-brain specimens

MPS-Authors
/persons/resource/persons188645

Pine,  Kerrin
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons180061

Kirilina,  Evgeniya
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, FU Berlin, Germany;

/persons/resource/persons20053

Trampel,  Robert
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19864

Möller,  Harald E.
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons23475

Bazin,  Pierre-Louis
Integrative Model-Based Cognitive Neuroscience Research Unit (IMCN), University of Amsterdam, the Netherlands;
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

Alkemade_Pine_2020.pdf
(Publisher version), 12MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Alkemade, A., Pine, K., Kirilina, E., Keuken, M. C., Mulder, M. J., Balesar, R., et al. (2020). 7 Tesla MRI followed by histological 3D reconstructions in whole-brain specimens. Frontiers in Neuroanatomy, 14: 536838. doi:10.3389/fnana.2020.536838.


Cite as: http://hdl.handle.net/21.11116/0000-0007-64EE-D
Abstract
Post mortem magnetic resonance imaging (MRI) studies on the human brain are of great interest for the validation of in vivo MRI. It facilitates a link between functional and anatomical information available from MRI in vivo and neuroanatomical knowledge available from histology/immunocytochemistry. However, linking in vivo and post mortem MRI to microscopy techniques poses substantial challenges. Fixation artifacts and tissue deformation of extracted brains, as well as co registration of 2D histology to 3D MRI volumes complicate direct comparison between modalities. Moreover, post mortem brain tissue does not have the same physical properties as in vivo tissue, and therefore MRI approaches need to be adjusted accordingly. Here, we present a pipeline in which whole-brain human post mortem in situ MRI is combined with subsequent tissue processing of the whole human brain, providing a 3-dimensional reconstruction via blockface imaging. To this end, we adapted tissue processing procedures to allow both post mortem MRI and subsequent histological and immunocytochemical processing. For MRI, tissue was packed in a susceptibility matched solution, tailored to fit the dimensions of the MRI coil. Additionally, MRI sequence parameters were adjusted to accommodate T1 and T2∗ shortening, and scan time was extended, thereby benefiting the signal-to-noise-ratio that can be achieved using extensive averaging without motion artifacts. After MRI, the brain was extracted from the skull and subsequently cut while performing optimized blockface imaging, thereby allowing three-dimensional reconstructions. Tissues were processed for Nissl and silver staining, and co-registered with the blockface images. The combination of these techniques allows direct comparisons across modalities.