English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Measurement bias detection through Bayesian factor analysis

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Barendse, M. T., Albers, C. J., Oort, F. J., & Timmerman, M. E. (2014). Measurement bias detection through Bayesian factor analysis. Frontiers in Psychology, 5: 1087. doi:10.3389/fpsyg.2014.01087.


Cite as: https://hdl.handle.net/21.11116/0000-0007-662D-5
Abstract
Measurement bias has been defined as a violation of measurement invariance. Potential violators—variables that possibly violate measurement invariance—can be investigated through restricted factor analysis (RFA). The purpose of the present paper is to investigate a Bayesian approach to estimate RFA models with interaction effects, in order to detect uniform and nonuniform measurement bias. Because modeling nonuniform bias requires an interaction term, it is more complicated than modeling uniform bias. The Bayesian approach seems especially suited for such complex models. In a simulation study we vary the type of bias (uniform, nonuniform), the type of violator (observed continuous, observed dichotomous, latent continuous), and the correlation between the trait and the violator (0.0, 0.5). For each condition, 100 sets of data are generated and analyzed. We examine the accuracy of the parameter estimates and the performance of two bias detection procedures, based on the DIC fit statistic, in Bayesian RFA. Results show that the accuracy of the estimated parameters is satisfactory. Bias detection rates are high in all conditions with an observed violator, and still satisfactory in all other conditions.