Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Grain Dependent Growth of Bright Quantum Emitters in Hexagonal Boron Nitride

MPG-Autoren
/persons/resource/persons250377

Morales-Inostroza,  Luis
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201072

Götzinger,  Stephan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
Department of Physics, Friedrich Alexander University Erlangen-Nuremberg (FAU);
Graduate School in Advanced Optical Technologies (SAOT), Friedrich Alexander University Erlangen-Nuremberg (FAU);
Sandoghdar Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mendelson, N., Morales-Inostroza, L., Li, C., Ritika, R., Nguyen, M. A. P., Loyola-Echeverria, J., et al. (2020). Grain Dependent Growth of Bright Quantum Emitters in Hexagonal Boron Nitride. Advanced Optical Materials. doi:10.1002/adom.202001271.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-6694-F
Zusammenfassung
Point defects in hexagonal boron nitride have emerged as a promising quantum light source due to their bright and photostable room temperature emission. In this work, the incorporation of quantum emitters during chemical vapor deposition growth on a nickel substrate is studied. Combining a range of characterization techniques, it is demonstrated that the incorporation of quantum emitters is limited to (001) oriented nickel grains. Such emitters display improved emission properties in terms of brightness and stability. These emitters are further utilized and integrated with a compact optical antenna enhancing light collection from the sources. The hybrid device yields average saturation count rates of ≈2.9 × 106 cps and an average photon purity of g(2)(0) ≈ 0.1. The results advance the understanding of single photon emitter incorporation during chemical vapor deposition growth and demonstrate a key step towards compact devices for achieving maximum collection efficiency.